

# Mark Scheme (Final)

## Summer 2023

Pearson Edexcel International Advanced Subsidiary Level In Chemistry (WCH11) Paper 01

Unit 1: Structure, Bonding and Introduction to Organic Chemistry

### **Section A**

| Question<br>Number | Answer                                                                                                                                             | Mark     |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1                  | The only correct answer is A (MgBr <sub>2</sub> )                                                                                                  | (1)      |
|                    | $m{B}$ is incorrect because the fluoride ion is less polarisable than the bromide ion                                                              | Computer |
|                    | C is incorrect because the sodium ion is less polarising than the magnesium ion                                                                    |          |
|                    | $m{D}$ is incorrect because the sodium ion is less polarising than the magnesium ion and the fluoride ion is not as polarisable as the bromide ion |          |

| Question<br>Number | Answer                                                                       | Mark     |
|--------------------|------------------------------------------------------------------------------|----------|
| 2                  | The only correct answer is $B (Mg^{2+})$                                     | (1)      |
|                    | A is incorrect because the fluoride anion has fewer protons than magnesium   | Computer |
|                    | C is incorrect because the sodium cation has fewer protons than magnesium    |          |
|                    | <b>D</b> is incorrect because the oxide ion has fewer protons than magnesium |          |

| Question<br>Number | Answer                                                                                                          | Mark     |
|--------------------|-----------------------------------------------------------------------------------------------------------------|----------|
| 3                  | The only correct answer is C (Group 5)                                                                          | (1)      |
|                    | $m{A}$ is incorrect because the jump between $3^{rd}$ and $4^{th}$ IE is not as great as between IE 5 and 6     | Computer |
|                    | <b>B</b> is incorrect because the jump between $4^{rd}$ and $5^{th}$ IE is not as great as between IE 5 and 6   |          |
|                    | <b>D</b> is incorrect because the jump between $5^{th}$ and $6^{th}$ IE is much greater than between IE 6 and 7 |          |

| Question<br>Number |                                               |           | A         | Answer          |                 |                 |           |                       | Mark     |
|--------------------|-----------------------------------------------|-----------|-----------|-----------------|-----------------|-----------------|-----------|-----------------------|----------|
| 4                  | The only correct answer is D                  |           |           |                 |                 |                 |           |                       | (1)      |
|                    |                                               | 1s        | 2s        | 2p <sub>x</sub> | 2p <sub>y</sub> | 2p <sub>z</sub> | 3s        |                       | Computer |
|                    |                                               | ↑↓        | ↑↓        | ↑↓              | <b>†</b>        | <b>↑</b>        |           |                       | Computer |
|                    | A is incorrect because both occupied ?        | 2p orbita | ls are pa | ired and        | there is o      | one unoc        | cupied 2p | o orbital             |          |
|                    | <b>B</b> is incorrect because the occupied 2p | o orbital | has two d | electrons       | with the        | same spi        | in        |                       |          |
|                    | C is incorrect because one electron ha        | is been p | romoted   | into the .      | 3s orbitai      | l so the a      | tom is no | t in its ground state |          |

| Question<br>Number | Answer                                                                                      | Mark     |
|--------------------|---------------------------------------------------------------------------------------------|----------|
| 5                  | The only correct answer is A (atomic radius)                                                | (1)      |
|                    | <b>B</b> is incorrect because the electronegativities increase across Period 3              | Computer |
|                    | C is incorrect because first ionisation energies generally increase across Period 3         |          |
|                    | $m{D}$ is incorrect because the melting temperatures increase then decrease across Period 3 |          |

| Question<br>Number | Answer                                                                                                                               | Mark     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------|
| 6                  | The only correct answer is C (the repulsion between the outer electrons of sulfur is greater than that of                            | (1)      |
|                    | phosphorus)                                                                                                                          | Computer |
|                    | A is incorrect because the atomic radius of sulfur is less than that of phosphorus                                                   | Computer |
|                    | $m{B}$ is incorrect because electronegativity is a measure of the attraction of an atom for the bonding electrons in a covalent bond |          |
|                    | <b>D</b> is incorrect because the screening of the outer electrons of sulfur and phosphorus is the same                              |          |

| Question<br>Number | Answer                                                                                                               | Mark     |
|--------------------|----------------------------------------------------------------------------------------------------------------------|----------|
| 7(a)               | The only correct answer is B (64)                                                                                    | (1)      |
|                    | A is incorrect because the mass of bromide has been converted into moles                                             | Computer |
|                    | $C$ is incorrect because the mass of bromide in mg has been divided by the $A_r$ of bromine before conversion to ppm |          |
|                    | $m{D}$ is incorrect because the mass of bromide ions has been taken as 64 g rather than 64 mg                        |          |

| Question<br>Number | Answer                                                                                                                                              | Mark     |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <b>7(b)</b>        | The only correct answer is A $(2.4 \times 10^{20})$                                                                                                 | (1)      |
|                    | <b>B</b> is incorrect because the mass of solution has not been divided by 2                                                                        | Computer |
|                    | $C$ is incorrect because the mass of the ions has not been divided by the $A_r$ of bromine                                                          |          |
|                    | ${\bf D}$ is incorrect because the mass of the ions has not been divided by the $A_r$ of bromine and the mass of solution has not been divided by 2 |          |

| Question<br>Number | Answer                                                                                                            | Mark     |
|--------------------|-------------------------------------------------------------------------------------------------------------------|----------|
| 8                  | The only correct answer is B (0.09 mol aluminium)                                                                 | (1)      |
|                    | $oldsymbol{A}$ is incorrect because that is the number of moles of aluminium that has reacted                     | Computer |
|                    | $m{C}$ is incorrect because the reacting ratio of aluminium to acid has been taken as $1:1$                       |          |
|                    | $m{D}$ is incorrect because the limiting reagent has not been recognised and the reacting ratio has been reversed |          |

| Question<br>Number | Answer                                                                                                                                   | Mark     |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 9                  | The only correct answer is B (CH <sub>2</sub> Cl)                                                                                        | (1)      |
|                    | A is incorrect because atomic numbers have been used to calculate the empirical formula                                                  | Computer |
|                    | C is incorrect because this is not an empirical formula of the compound                                                                  |          |
|                    | $m{D}$ is incorrect because the atomic numbers have been used to calculate the empirical formula and the ratios have not been simplified |          |

| Question<br>Number | Answer                                                                                                                                      | Mark     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 10                 | <b>The only correct answer is D</b> (250 cm <sup>3</sup> of 0.09 mol dm <sup>-3</sup> (NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> (aq)) | (1)      |
|                    | A is incorrect because there are 0.09 mol of ions                                                                                           | Computer |
|                    | <b>B</b> is incorrect because there are 0.09 mol of ions                                                                                    |          |
|                    | C is incorrect because there are 0.09 mol of ions                                                                                           |          |

| Question<br>Number | Answer                                                                                   |          |
|--------------------|------------------------------------------------------------------------------------------|----------|
| 11                 | The only correct answer is D (yellow blue)                                               |          |
|                    | A is incorrect because both the ions are moving in the wrong direction                   | Computer |
|                    | $m{B}$ is incorrect because only the copper(II) ions have been attracted to an electrode |          |
|                    | C is incorrect because only the chromate(VI) ions have been attracted to an electrode    |          |

| Question<br>Number | Answer                                                                                                |          |
|--------------------|-------------------------------------------------------------------------------------------------------|----------|
| 12                 | The only correct answer is A (beryllium ions are smaller than barium ions)                            |          |
|                    | <b>B</b> is incorrect because the number of electrons does not affect the melting temperature         | Computer |
|                    | $oldsymbol{C}$ is incorrect because the beryllium ion has a larger charge density than the barium ion |          |
|                    | $m{D}$ is incorrect because electronegativity does not affect the melting temperature                 |          |

| Question<br>Number | Answer                                                                                                                 |          |
|--------------------|------------------------------------------------------------------------------------------------------------------------|----------|
| 13                 | The only correct answer is A (BF <sub>3</sub> )                                                                        |          |
|                    | $m{B}$ is incorrect because there are four bonding pairs of electrons which repel equally                              | Computer |
|                    | $m{C}$ is incorrect because there are two bonding pairs of electrons which repel less strongly than the two lone pairs |          |
|                    | $m{D}$ is incorrect because there are three bonding pairs of electrons which repel less strongly than the lone pair    |          |

| Question<br>Number | Answer                                                                                                           |          |
|--------------------|------------------------------------------------------------------------------------------------------------------|----------|
| 14                 | The only correct answer is C (SO <sub>2</sub> )                                                                  |          |
|                    | $m{A}$ is incorrect because although the bonds are polar, the dipoles cancel because the molecule is linear      | Computer |
|                    | $m{B}$ is incorrect because although the bonds are polar, the dipoles cancel because the molecule is octahedral  |          |
|                    | $m{D}$ is incorrect because although the bonds are polar, the dipoles cancel because the molecule is tetrahedral |          |

| Question<br>Number | Answer                                                                                          |          |
|--------------------|-------------------------------------------------------------------------------------------------|----------|
| 15                 | The only correct answer is C $(CH_3 \bullet + H \bullet \rightarrow CH_4)$                      | (1)      |
|                    | A is incorrect because methyl free radicals are present                                         | Computer |
|                    | <b>B</b> is incorrect because the chlorine free radical and the methyl free radical are present |          |
|                    | D is incorrect because chlorine free radicals are present                                       |          |

| Question<br>Number | Answer                                                                          |          |
|--------------------|---------------------------------------------------------------------------------|----------|
| 16                 | The only correct answer is C (2-methylbut-2-ene)                                | (1)      |
|                    | A is incorrect because the name is not based on the longest carbon chain        | Computer |
|                    | <b>B</b> is incorrect because the name is not based on the longest carbon chain |          |
|                    | D is incorrect because the numbering of the substituent group is incorrect      |          |

| Question<br>Number | Answer                                                                                                                                         |          |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 17                 | <b>The only correct answer is A</b> ( <i>E</i> -1-bromo-2-methylbut-1-ene)                                                                     |          |
|                    | <b>B</b> is incorrect because the highest priority groups are on opposite sides of the double bond                                             | Computer |
|                    | C is incorrect because the longest carbon chain has four atoms                                                                                 |          |
|                    | <b>D</b> is incorrect because the longest carbon chain has four atoms and the highest priority groups are on opposite sides of the double bond |          |

| Question<br>Number | Answer                                                                                                                  |          |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|----------|
| 18(a)              | The only correct answer is D (14)                                                                                       | (1)      |
|                    | $m{A}$ is incorrect because only the C-C single bonds in the ring have been counted                                     | Computer |
|                    | ${\it B}$ is incorrect because only the C-C sigma bonds in the ring have been counted                                   |          |
|                    | C is incorrect because the eight $C-H$ sigma bonds have been counted but only four $C-C$ single bonds have been counted |          |

| Question<br>Number | Answer                                                                                                      |          |
|--------------------|-------------------------------------------------------------------------------------------------------------|----------|
| 18(b)              | The only correct answer is C (0.960)                                                                        | (1)      |
|                    | A is incorrect because the molar volume has not been used                                                   | Computer |
|                    | <b>B</b> is incorrect because only one double bond has been reduced                                         |          |
|                    | $m{D}$ is incorrect because hydrogen atoms have been used in the calculation rather than hydrogen molecules |          |

#### **TOTAL FOR SECTION A = 20 MARKS**

| A | В | C | D |
|---|---|---|---|
| 6 | 4 | 6 | 4 |

### **Section B**

| Question<br>Number | Answer                                                                                                                                     | Additional Guidance                                                                                                                                                                     | Mark   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 19(a)(i)           | An answer that makes reference to the following point:                                                                                     |                                                                                                                                                                                         | (1)    |
|                    | <ul> <li>(vaporised atoms are ionised by) bombarding / striking/<br/>hitting/firing with (high speed / high energy) electron(s)</li> </ul> | Allow molecules for atoms<br>Allow electron gun / electron beam /<br>Allow $X + e^- \rightarrow X^+ + 2e^-$<br>Ignore electron current, voltage<br>Ignore incorrect ionisation equation | Expert |

| Question<br>Number | Answer                                                                                                                                          | Additional Guidance                                                                                                                                            | Mark     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 19(a)(ii)          | An answer that makes reference to the following point:                                                                                          |                                                                                                                                                                | (1)      |
|                    | <ul> <li>(ions are accelerated by) an electric field / voltage/<br/>potential difference / (series of negatively) charged<br/>plates</li> </ul> | Ignore references to link between mass of ion and acceleration/speed Do not award references to (electro)magnetic field Do not award positively charged plates | Graduate |

| Question<br>Number | Answer                                                                             | Additional Guidance                                                                                                                                                                         | Mark             |
|--------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 19(a)(iii)         | An explanation that makes reference to the following points:                       |                                                                                                                                                                                             | (2)              |
|                    | (atoms/isotopes) have the same/identical electronic configurations / isoelectronic | Allow the same number of (outer) electron                                                                                                                                                   | ns <b>Expert</b> |
|                    | (isotopes/atom/ions) have different masses/ different m/z (with same charge)       | Accept heavier isotopes are deflected less isotopes are deflected more Ignore reference to just neutrons Ignore reference to protons Ignore comments linking deflection to characteristics. |                  |

| Question<br>Number | Answer                                                                                                                                                                   | Additional Guidance                                                                                                           | Mark   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------|
| 19(b)(i)           | An explanation that makes reference to the following points:                                                                                                             |                                                                                                                               | (2)    |
|                    | <ul> <li>(weighted) mean / average mass of atom(s) (of an element)</li> <li>divided by/compared to 1/12 (mass) of a <sup>12</sup>C (atom) / (carbon 12 (atom)</li> </ul> | Accept  (weighted) mean mass of an atom  1 of the (mass) of a carbon 12 atom for both marks  Do not award molecules for atoms | Expert |

| Question<br>Number | Answer                                       | Additional Guidance                                 | Mark   |
|--------------------|----------------------------------------------|-----------------------------------------------------|--------|
| 19(b)(ii)          |                                              | Example of calculation                              | (2)    |
|                    | • calculation of weighted mean / average (1) | $\frac{(75.53 \times 35) + (24.47 \times 37)}{100}$ | Expert |
|                    |                                              | (26.436 + 9.0539 = 35.489)                          |        |
|                    | • answer to 4 SF (1)                         | 35.49 Correct answer with no working scores 2       |        |
|                    |                                              | TE on arithmetical errors in M1 provided answer     |        |
|                    |                                              | between 35 and 37                                   |        |

| Question<br>Number | Answer                                                            | Additional Guidance                                                                                                       | Mark     |
|--------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------|
| 19(c)(i)           | An answer that makes reference to the following points:           |                                                                                                                           | (2)      |
|                    | • $101  {}^{31}P^{35}Cl^{35}Cl^{+} / {}^{31}P^{35}Cl_{2} +$       | All three correct scores 2 Two correct scores 1                                                                           | Graduate |
|                    | • $103  {}^{31}P^{35}Cl^{37}Cl^{+} /  {}^{31}P^{37}Cl^{35}Cl^{+}$ | Allow omission of 31 on P                                                                                                 |          |
|                    | • $105  {}^{31}P^{37}Cl^{37}Cl^+ / {}^{31}P^{37}Cl_2 +$           | Allow atoms in any order<br>Allow isotope mass after symbol e.g. Cl <sup>35</sup><br>Ignore any bonds shown between atoms |          |
|                    |                                                                   | Penalise omission of / incorrect charge once only<br>Penalise omission of P once only                                     |          |

| Question<br>Number | Answer                                                           | Additional Guidance                             | Mark   |
|--------------------|------------------------------------------------------------------|-------------------------------------------------|--------|
| 19(c)(ii)          | An explanation that makes reference to the following points:     |                                                 | (2)    |
|                    |                                                                  | All three correct scores 2                      |        |
|                    | <ul> <li>so the ratios for the three ions are</li> </ul>         | Two correct scores 1                            | Expert |
|                    | $(101) \frac{3}{4} \times \frac{3}{4} = \frac{9}{16} (= 0.5625)$ | Allow (101) $3 \times 3 = 9$                    | _      |
|                    | $(103)^{1/4} \times {}^{3/4} \times 2 = 6/16 \ (= 0.375)$        | $(103) 1 \times 3 \times 2 = 6$                 |        |
|                    | $(105)^{1/4} \times ^{1/4} = 1/16 (= 0.0625)$                    | $(105) 1 \times 1 = 1$                          |        |
|                    |                                                                  | Allow use of original isotopic percentages i.e. |        |
|                    |                                                                  | 75.53% for <sup>35</sup> Cl etc                 |        |

| Question<br>Number | Answer                                                  |            | Additional Guidance                          | Mark   |
|--------------------|---------------------------------------------------------|------------|----------------------------------------------|--------|
| 19(d)(i)           | An answer that makes reference to the following points: |            | Example of diagram                           | (2)    |
|                    | • 3 shared pairs of electrons                           | <b>(1)</b> | • CI X D X CI •                              | Expert |
|                    | • all other electrons correct (                         | (1)        | : CI ; P ; CI ;                              |        |
|                    |                                                         |            | Electrons can be shown as all dots / crosses |        |

| Question<br>Number | Answer                                                                                      | Additional Guidance                                                                                                                     | Mark   |
|--------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------|
| 19(d)(ii)          | An explanation that makes reference to the following points:                                |                                                                                                                                         | (3)    |
|                    | • drawn or stated (trigonal) pyramidal shape (1                                             | Ignore reference to bond angle even if incorrect                                                                                        | Expert |
|                    | • minimum repulsion between electron pairs (1                                               | Allow maximum separation between electron pairs                                                                                         |        |
|                    | • lone pairs repel more than bonded pairs / lp-bp repulsion is greater than bp-bp repulsion | Do not award lp-lp repulsion is greater than bp-lp/bp-bp repulsion TE on incorrect dot-and-cross diagram from (d)(i) for M1 and M2 only |        |

(Total for Question 19 = 17 marks)

| Question<br>Number | Answer                                                                                                    | Additional Guidance                    | Mark   |
|--------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------|--------|
| 20(a)(i)           | An answer that makes reference to the following point:                                                    |                                        | (1)    |
|                    | • BaCO <sub>3</sub> + 2H <sup>+</sup> $\rightarrow$ Ba <sup>2+</sup> + CO <sub>2</sub> + H <sub>2</sub> O | Ignore state symbols even if incorrect | Expert |

| Question<br>Number | Answer                                                       | Additional Guidance                                            | Mark   |
|--------------------|--------------------------------------------------------------|----------------------------------------------------------------|--------|
| 20(a)(ii)          |                                                              | Example of calculation                                         | (2)    |
|                    | • calculation of $M_r$ of barium chloride and total $M_r$ of | 137.3 + 71 (= 208.3) <b>and</b>                                |        |
|                    | reactants / products (1                                      | )   208.3 + 44 + 18 (= 270.3)                                  | Expert |
|                    |                                                              |                                                                |        |
|                    | • $\underline{M_r}$ barium chloride $\times 100$             | $(208.3 \div 270.3) \times 100 = 77.063\%$                     |        |
|                    | total $M_{\rm r}$ of reactants / products (1)                | Ignore SF except 1 SF                                          |        |
|                    | •                                                            | Correct answer with no working scores 2                        |        |
|                    |                                                              | No TE on atom economy of incorrect product                     |        |
|                    |                                                              | Allow TE on incorrect A <sub>r</sub> / Mr/ transcription error |        |

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                          |                   | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                   | Mark       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 20(a)(iii)         | <ul> <li>An explanation that makes reference to the following points:</li> <li>barium ion has a greater charge than caesium ion / Ba has 2+ and Cs has 1+ charge</li> <li>barium ion is smaller than the caesium ion</li> <li>the (electrostatic) attraction/force(s) between the ions is greater in barium chloride</li> </ul> | (1)<br>(1)<br>(1) | Ignore references to polarisation Allow barium ion has a greater charge density than the caesium ion  Ignore references to atomic radius  Allow ionic bonding is stronger in barium chloride Allow just bonding if ions are mentioned previously. Allow barium ions form stronger bonds with chlorine Ignore references to attraction of nucleus and electrons Ignore references to electronegativity | (4) Expert |
|                    | <ul> <li>so more energy is required to break the (ionic) bonding<br/>/ higher (negative) lattice energy</li> </ul>                                                                                                                                                                                                              | (1)               | Ignore number of bonds Do not award references to intermolecular forces M4 dependent on M3                                                                                                                                                                                                                                                                                                            |            |

| Question<br>Number | Answer                                                                                                                                                                                                            |     | Additional Guidance                                                                                                                                                                                                                                      | Mark   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 20(a)(iv)          | An explanation that makes reference to the following points:                                                                                                                                                      |     | Allow reverse argument throughout                                                                                                                                                                                                                        | (2)    |
|                    | • the difference in electronegativity between barium and chlorine is greater than that between beryllium and chlorine/ (electronegativity difference) in BaCl <sub>2</sub> is 2.1 and in BeCl <sub>2</sub> is 1.5 | (1) | Ignore barium is less polarising than beryllium                                                                                                                                                                                                          | Expert |
|                    | the Ba–Cl bond will have more ionic / less covalent character than the Be–Cl bond                                                                                                                                 | (1) | Allow barium chloride is more ionic/less covalent /more polar than beryllium chloride Allow the Ba-Cl bond is more polar than the Be-Cl bond Allow Be-Cl bonds are polar covalent Ignore just "barium chloride is ionic, beryllium chloride is covalent" |        |

| Question<br>Number | Answer                                                                 | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark   |
|--------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 20(b)              |                                                                        | Example of calculation                                                                                                                                                                                                                                                                                                                                                                                                                                       | (4)    |
|                    | • calculation of $M_{\rm r}$ BaSO <sub>4</sub> (1                      | 137.3 + 32.1 + 64 (= 233.4)                                                                                                                                                                                                                                                                                                                                                                                                                                  | Expert |
|                    | • calculation of amount of BaSO <sub>4</sub> (1                        | $10.72 \div 233.4 = 0.045930 \text{ (mol)}$                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                    | • calculation of mass of Group 1 metal (1                              | $7.98 - (0.045930 \times 96.1) = 7.98 - 4.4138 = 3.5662 / 3.57 (g)$                                                                                                                                                                                                                                                                                                                                                                                          |        |
|                    | • calculation of $A_r$ of Group 1 metal and identification of metal (1 | $\frac{3.5662 \div 0.045930}{2} = (38.822) = 38.8/39 \text{ and potassium / K}$ Alternative Scheme for M3 and M4 $M_{\rm r}  \text{M}_2 \text{SO}_4 = 7.98 \div 0.04593 = 173.7  (1)$ $\frac{173.7 - 96.1}{2} = 38.8 / 39 \text{ and potassium / K}$ Alternative scheme $96.1 \div 233.4 \times 10.72 = 4.414 \text{ g SO}_4^{2-} \text{ scores M1, M2}$ $7.98 - 4.414 = 3.5662/3.57 \text{ scores M3}$ Then M4 as above Ignore SF except 1 SF TE throughout |        |

(Total for Question 20 = 13 marks)

| Question<br>Number | Answer                                                                                                                                                                                                     |     | Additional Guidance                                   | Mark   |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------|--------|
| 21(a)              | An explanation that makes reference to the following points:                                                                                                                                               |     |                                                       | (3)    |
|                    | • graphite has a giant covalent structure / many (strong) covalent bonds within the layers/ <b>each</b> carbon atom is covalently bonded to 3 other carbon atoms                                           | (1) | Ignore references to intermolecular forces, shape     | Expert |
|                    | • (which gives it) a high melting temperature /requires a lot of energy to break/melt                                                                                                                      | (1) |                                                       |        |
|                    | <ul> <li>it has delocalised electron(s) (between the layers)         and         which allows it to conduct electricity / carry charge/         can move when a potential difference is applied</li> </ul> | (1) | Allow free electrons  Do not award conduction by ions |        |

| Question<br>Number | Answer                                                                     |     | Additional Guidance                                                                                                                 | Mark   |
|--------------------|----------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------|--------|
| 21(b)(i)           |                                                                            |     | Example of calculation                                                                                                              | (4)    |
|                    | • calculation of moles of aluminium in 1 kg                                | (1) | $1000 \div 27 = 37.037 \text{ (mol)}$                                                                                               | Expert |
|                    | <ul> <li>deduction of aluminium to oxygen/ CO<sub>2</sub> ratio</li> </ul> | (1) | 2:1.5 or 4:3                                                                                                                        |        |
|                    | • amount of CO <sub>2</sub> produced                                       | (1) | $37.037 \times \frac{3}{4} = 27.778 \text{ (mol)}$                                                                                  |        |
|                    | • volume CO <sub>2</sub> produced                                          | (1) | $27.778 \times 24 = 667 \text{ (dm}^3\text{)}$<br>Correct answer with some working scores 4<br>If units given, they must be correct |        |
|                    |                                                                            |     | Ignore SF except 1 SF                                                                                                               |        |

| Question<br>Number | Answer                                                                                          |     | Additional Guidance                                                                                                                                                                                                | Mark   |
|--------------------|-------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| <b>21b(ii)</b>     | An explanation that makes reference to the following points::                                   |     | Ignore references to alternative storage e.g. plastics                                                                                                                                                             | (3)    |
|                    | <ul> <li>less mining (of bauxite/ore/aluminium)/ less transport of raw<br/>materials</li> </ul> | (1) | Allow less raw materials used                                                                                                                                                                                      | Expert |
|                    | the electrolysis of aluminium oxide is reduced / less new aluminium produced                    | (1) | Accept reduces need for electrolysis/<br>extraction<br>Accept less fossil fuels burned to produce<br>energy for electrolysis                                                                                       |        |
|                    | recycling involves melting the metal which uses less energy (than electrolysis)                 | (1) | Ignore less need to produce cans Ignore space is saved /landfill Ignore references to reduction in carbon dioxide produced Ignore references to incineration Do not award no heat/energy is needed (for recycling) |        |

(Total for Question 21 = 10 marks)

| Question<br>Number | Answer                                                      | Additional Guidance                                                                        | Mark   |
|--------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------|
| 22(a)(i)           | An answer that makes reference to the following points:     |                                                                                            | (2)    |
|                    | • a compound containing hydrogen and carbon only (1)        | Allow general formula containing C and H only                                              | Expert |
|                    | • which only has single bond(s) / has no multiple bonds (1) | Does not contain C=C/no double bonds/all carbon atoms have the maximum number of hydrogens |        |

| Question<br>Number | Answer                                                                       | Additional Guidance                                                                                                                                                                                                                              | Mark   |
|--------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 22(a)(ii)          | An explanation that makes reference to the following points:                 |                                                                                                                                                                                                                                                  | (2)    |
|                    | • the vapour condenses at different levels / temperatures (1                 | Allow different boiling temperatures/ points Ignore evaporate Do not award melting temperatures                                                                                                                                                  | Expert |
|                    | the higher the boiling temperature the lower the level at which it condenses | Allow reference to the temperature gradient (high temperature at the bottom of the column, low temperature at the top) Allow the higher the volatility, the higher the level at which it condenses Ignore references to size, density, viscosity |        |

| Question<br>Number | Answer                                                                                             |     | Additional Guidance                                                                                                       | Mark   |
|--------------------|----------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------|--------|
| 22(b)              |                                                                                                    |     | Example of calculation                                                                                                    | (5)    |
|                    | • calculation of amount of butane                                                                  | (1) | $1.55 \div 58 = 0.026724 / 2.6724 \times 10^{-2} \text{ (mol)}$                                                           | Expert |
|                    | • convert T from °C to K                                                                           | (1) | 25 + 273 = 298  (K)                                                                                                       |        |
|                    | and                                                                                                |     | and                                                                                                                       |        |
|                    | kPa to Pa                                                                                          |     | $100 \times 1000 = 100000 / 1 \times 10^5 (\text{Pa})$                                                                    |        |
|                    | <ul> <li>correct rearrangement of the ideal gas equation and<br/>substitution of values</li> </ul> | (1) | $V = \underline{nRT} = \underline{0.026724 \times 8.31 \times 298} = 6.6179 \times 10^{-4} \text{ (m}^3)$ $1 \times 10^5$ |        |
|                    | • conversion of m <sup>3</sup> to cm <sup>3</sup>                                                  | (1) | $6.6179 \times 10^{-4} \times 10^{6} = 661.79 \text{ (cm}^{3}\text{)}$                                                    |        |
|                    | • volume / dose in cm <sup>3</sup> to 2/3 SF                                                       | (1) | $661.79 \div 120 = 5.5149 = 5.51 \text{ (cm}^3\text{)}$                                                                   |        |
|                    |                                                                                                    |     | Answer to 2/3 SF                                                                                                          |        |
|                    |                                                                                                    |     | Penalise incorrect units in final answer only                                                                             |        |
|                    |                                                                                                    |     | M4 conversion to cm <sup>3</sup> and M5 calculation of volume of                                                          |        |
|                    |                                                                                                    |     | single dose can be credited at any stage                                                                                  |        |
|                    |                                                                                                    |     | Allow TE throughout                                                                                                       |        |

| Question<br>Number | Answer                                                  |     | Additional Guidance                                                      | Mark     |
|--------------------|---------------------------------------------------------|-----|--------------------------------------------------------------------------|----------|
| 22(c)(i)           | An answer that makes reference to the following points: |     |                                                                          | (2)      |
|                    | balanced symbol equation                                | (1) | $C_8H_{18}(1) + 12\frac{1}{2}O_2(g) \rightarrow 8CO_2(g) + 9H_2O(1)/(g)$ | Graduate |
|                    | correct state symbols                                   | (1) | M2 depends on correct species Allow multiples                            |          |

| Question<br>Number | Answer                                                                                                    |     | Additional Guidance                                                                                                                                                                                                                                       | Mark   |
|--------------------|-----------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 22(c)(ii)          | An answer that makes reference to the following points:                                                   |     |                                                                                                                                                                                                                                                           | (2)    |
|                    | <ul> <li>fossil fuels are non-renewable/ will run out/ are finite /<br/>biofuels are renewable</li> </ul> | (1) | Do not award biodegradable                                                                                                                                                                                                                                | Expert |
|                    | fossil fuels contribute to global warming / biofuels release the carbon dioxide absorbed while growing    | (1) | Allow fossil fuels contribute to climate change Allow biofuels (don't release net carbon dioxide so) are carbon neutral/ net zero Allow biofuels have a lower carbon footprint Ignore references to acid rain / NOx / Do not award references to hydrogen |        |

| Question<br>Number | Answer                                                 | Additional Guidance                                   | Mark     |
|--------------------|--------------------------------------------------------|-------------------------------------------------------|----------|
| <b>22(c)(iii)</b>  | An answer that makes reference to the following point: |                                                       | (1)      |
|                    | (catalytic) reforming/reformation                      | Allow isomerisation Do not award catalytic conversion | Clerical |

| Question<br>Number | Answer                                                    | Additional Guidance                                                                                                                                                                                                                                | Mark         |
|--------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 22(c)(iv)          | An answer that makes reference to the following point:  • | Allow structural methyl groups shown on branches and ignore vertical connectivity Ignore bond angles Ignore molecular / structural / displayed formulae Ignore state symbols even if incorrect Ignore references to reaction conditions/ catalysts | (1) Graduate |

| Question<br>Number | Answer                                                                                                                                                   | Additional Guidance                                                                                                                                                                                                                                           | Mark   |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 22(d)(i)           | An answer that makes reference to the following point:                                                                                                   |                                                                                                                                                                                                                                                               | (1)    |
|                    | <ul> <li>to prevent combustion/ oxidation / explosion (of the mixture)</li> <li>or</li> <li>oxygen reacts with hydrocarbons/ ethene /hydrogen</li> </ul> | Allow hydrocarbons are flammable/ can catch fire Allow to prevent formation of CO <sub>2</sub> / CO /C/ alcohols/diols/aldehydes Ignore references to side reactions/ (unwanted) products/ incorrect / toxic products Do not award (oxygen) reacts with steam | Expert |

| Question<br>Number | Answer                                                                                      | Additional Guidance                                                                                    | Mark   |
|--------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------|
| 22(d)(ii)          | An answer that makes reference to one of the following points:                              |                                                                                                        | (1)    |
|                    | <ul> <li>making polymers / poly(ethene) / polythene /<br/>polyethylene/ plastics</li> </ul> |                                                                                                        | Expert |
|                    | • ripening / maturing fruit e.g. bananas                                                    |                                                                                                        |        |
|                    | making ethanol / ethane-1,2-diol / antifreeze/ haloethane /                                 | Ignore to make alcohol Ignore polymerisation Ignore references to fuels Do not award making bioethanol |        |

| Question<br>Number | Answer                                                           | Additional Guidance                                                                       | Mark   |
|--------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------|
| 22(e)              | An answer that makes reference to the following points:          |                                                                                           | (3)    |
|                    | • dipole on HBr                                                  |                                                                                           | Expert |
|                    | • curly arrow from C=C bond to $H^{(\delta+)}$                   | Do not award partial charge on C=C                                                        |        |
|                    | • curly arrow from H-Br bond to Br or just beyond                |                                                                                           |        |
|                    | correct intermediate                                             |                                                                                           |        |
|                    | • lone pair on Br <sup>-</sup>                                   | Do not award partial charge on Br<br>Penalise incorrect or missing charge on Br once only |        |
|                    | • curly arrow from lone pair (if shown) on Br <sup>-</sup> to C+ | If lp shown and M5 scored, arrow must come from lp Penalise half arrows once only         |        |
|                    |                                                                  | H, c=c'H > H-c-c-H Hot Gis-  (Br-                                                         |        |
|                    |                                                                  | All 6 points scores 3 4 or 5 points scores 2 2 or 3 points scores 1                       |        |

(Total for Question 22 = 20 marks)

TOTAL FOR SECTION B = 60 MARKS TOTAL FOR PAPER = 80 MARKS